OpenAI Model Comparison: Image Location Analysis Performance

To determine the best model to use on the backend of whereisthisphoto.com, I analysed the performance of various OpenAI models at identifying photos taken all over the world.
The dataset was built from a combination of personal travel photos I have taken and photos downloaded from the r/whereintheworld subreddit. All photos had the metadata removed to ensure the models were solely performing image analysis on the photos.

The models were tested on the following criteria:

  • Accuracy of country identification
  • Average distance from the actual location

As well as a review of the results, I have included a detailed analysis of each image in the test dataset below, showing how different models performed in identifying their locations.

AI Model Performance Leaderboard

The chart below shows how each model performed across the test dataset. The score is derived from a combinatin of the country prediction accuracy and the average distance from the actual location.

RankModelAvg. ScoreCountry AccuracyAvg. DistancePrice/M TokensRelease Date
1o397.6494.59%27.3km$10.0016th April 2025
2gpt-4.195.4094.59%49.3km$2.0014th April 2025
3o192.1089.19%151.2km$15.005th December 2024
4gpt-4o91.7989.19%82.2km$2.5013th May 2024
5o4-mini86.0978.38%164.7km$1.1016th April 2025
6gpt-4.1-mini82.2981.08%639.5km$0.4014th April 2025
7gpt-4o-mini76.3570.27%562.7km$0.1518th July 2024
8gpt-4.1-nano62.6659.46%2569.5km$0.1014th April 2025

Country Prediction Rankings

RankModelCountry AccuracyPrice/M TokensRelease Date
1o394.59%$10.0016th April 2025
1gpt-4.194.59%$2.0014th April 2025
3o189.19%$15.005th December 2024
3gpt-4o89.19%$2.5013th May 2024
5gpt-4.1-mini81.08%$0.4014th April 2025
6o4-mini78.38%$1.1016th April 2025
7gpt-4o-mini70.27%$0.1518th July 2024
8gpt-4.1-nano59.46%$0.1014th April 2025

Coordinates Location Accuracy

RankModelAvg. DistancePrice/M TokensRelease Date
1o327.3km$10.0016th April 2025
2gpt-4.149.3km$2.0014th April 2025
3gpt-4o82.2km$2.5013th May 2024
4o1151.2km$15.005th December 2024
5o4-mini164.7km$1.1016th April 2025
6gpt-4o-mini562.7km$0.1518th July 2024
7gpt-4.1-mini639.5km$0.4014th April 2025
8gpt-4.1-nano2569.5km$0.1014th April 2025

Methodology

Our testing methodology incorporated:

  • A diverse set of images from personal travels and the r/whereintheworld subreddit
  • Evaluation based on distance in meters from the actual location and correct country identification
  • Normalized scoring system where closer predictions received higher scores.

Key Findings

  • o3, the most recently released model in our testing, performed the best overall, demonstrating OpenAI's continued improvement in image location analysis capabilities.
  • o3 and gpt-4.1 achieved identical country prediction accuracy, but gpt-4.1 is significantly more cost-effective at $2 per million tokens compared to o3's $10 per million tokens.
  • Among the mini models tested, o4-mini showed the strongest performance, suggesting promising potential for the upcoming full o4 model release.

Detailed Analysis by Image Type

Famous Landmarks

For well-known landmarks like the Eiffel Tower or Colosseum, most models performed exceptionally well, with accuracy often within 100 meters. Even smaller models could recognize these iconic structures with high confidence.

Urban Environments

In urban settings with distinctive architecture or signage, o3 and GPT-4.1 demonstrated remarkable precision, often identifying not just the city but the specific street or neighborhood.

Natural Landscapes

Natural landscapes proved more challenging, with accuracy varying widely. The most advanced models could often identify general regions correctly, but precision depended heavily on the distinctiveness of the landscape features.

Suburban Areas

Suburban locations presented a challenge for all models, with even the top performers sometimes struggling to provide precise locations. In these cases, country-level identification remained relatively accurate, but street-level precision was rare.

Conclusion

Our testing reveals impressive capabilities in today's AI models for location identification, with o3 coming out on top but closely folllowed by GPT-4.1. These results highlight the rapid advancement in multimodal AI understanding, combining visual recognition with geographic knowledge.

For users seeking the most accurate location identification, larger models still offer significant advantages over their smaller counterparts. However, the performance of mini models may be sufficient for many everyday use cases, especially when dealing with distinctive landmarks or locations.

As these models continue to evolve, we can expect even greater precision in image location identification, making tools like whereisthisphoto.com increasingly valuable for travelers, photographers, and curious minds alike.

Detailed Image Analysis

Below is a detailed analysis of each image in our test dataset, showing how different models performed in identifying their locations. Each image is displayed alongside the results from each model, including their prediction accuracy and distance from the actual location.

Test image: 0810mpoizjye1

Chulilla. Spain

Coordinates: 39.6557851293197, -0.8925492484373408

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o99.98423mChulilla Canyon. Valencia. Spain39.6522, -0.8942
o199.96792mChulilla Canyon. Valencia. Spain39.66, -0.9
o399.931.4kmTuria River Canyon. Chulilla, Valencia. Spain39.645, -0.885
gpt-4.199.617.8kmChulilla Gorge. Valencia. Spain39.6631, -0.9831
o4-mini85.34346.9kmCongost de Mont-rebei. Catalonia. Spain42.44, 0.98
gpt-4.1-mini0.018695.0kmChorros de Somoto Canyon. Madriz. Nicaragua13.36, -86.4
gpt-4o-mini0.018998.6kmCanñon de la Huasteca. Nuevo León. Mexico25.6102, -100.4695
gpt-4.1-nano0.009336.5kmCanyon de la Vieja. La Paz. Bolivia-16.56, -68.15
Test image: 121h0fc7l5ze1

MIT. Cambridge. Massachusetts. USA

Coordinates: 42.35826604462596, -71.09414676335707

ModelScoreDistanceCountryPredicted LocationCoordinates
o3100.0019mAlchemist sculpture, MIT Campus, Cambridge. Massachusetts. USA42.3581, -71.0942
o199.99199mMIT campus. Cambridge. United States42.3595, -71.0959
gpt-4.199.99240mAlchemist sculpture. Massachusetts Institute of Technology (MIT), Cambridge, USA42.3598, -71.0921
gpt-4o99.99297mAlchemist Sculpture. MIT Campus. Cambridge, USA42.3598, -71.0912
gpt-4.1-mini67.651041.4kmJames Sanborn Sculpture. University of Michigan. Ann Arbor. USA42.278, -83.7382
gpt-4.1-nano33.46401.7kmMontreal. Montreal. Canada45.5017, -73.5673
o4-mini25.03691.9kmNomade. Robarts Library, Toronto. Canada43.6629, -79.3965
gpt-4o-mini1.763344.5kmUniversity of Alberta. Edmonton. Canada53.5232, -113.5263
Test image: 1a2l0pc2r4ze1

Tegallalang Rice Terraces. Bali. Indonesia

Coordinates: -8.434824382507692, 115.28077234054496

ModelScoreDistanceCountryPredicted LocationCoordinates
o4-mini99.99146mTegalalang Rice Terraces. Ubud, Bali. Indonesia-8.4342, 115.2796
gpt-4.199.99202mTegallalang Rice Terraces. Ubud, Bali. Indonesia-8.4353, 115.279
gpt-4.1-mini99.99228mTegalalang Rice Terrace. Ubud. Bali, Indonesia-8.4344, 115.2828
gpt-4o99.99283mTegalalang Rice Terrace. Bali. Indonesia-8.4325, 115.2797
o199.98308mTegalalang Rice Terrace. Ubud. Indonesia-8.434, 115.2781
gpt-4.1-nano99.96865mTegalalang Rice Terraces. Ubud. Indonesia-8.4324, 115.2733
o399.911.9kmTegalalang Rice Terrace. Ubud, Bali. Indonesia-8.4178, 115.2797
gpt-4o-mini99.608.1kmTegalalang Rice Terraces. Bali. Indonesia-8.5078, 115.278
Test image: 1ny05sjhcxcd1

Venice. Italy

Coordinates: 45.439096190614194, 12.318233780380542

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o99.99286mNarrow Canal. Venice. Italy45.4408, 12.3155
gpt-4.199.99286mCanal. Venice. Italy45.4408, 12.3155
o399.99286mNarrow canal. Venice. Italy45.4408, 12.3155
gpt-4.1-mini99.97665mVenice. Veneto. Italy45.4386, 12.3267
gpt-4.1-nano99.951.0kmVenice. Cannaregio. Italy45.4484, 12.3192
o4-mini99.941.1kmVenice. Cannaregio. Italy45.445, 12.3297
gpt-4o-mini99.931.4kmVenice. Veneto. Italy45.4372, 12.3355
o199.931.4kmCanal in Venice. Veneto. Italy45.4379, 12.3358
Test image: 20hw4symblye1

Sun World. Ba Na Hills. Vietnam

Coordinates: 16.026563277569952, 108.03299002482896

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4.199.774.7kmBa Na Hills French Village. Da Nang. Vietnam16.0031, 107.9964
o4-mini99.764.8kmFrench Village. Ba Na Hills. Vietnam15.9944, 108.0027
o399.745.2kmSun World Ba Na Hills French Village. Da Nang. Vietnam15.996, 107.996
gpt-4o99.745.2kmBa Na Hills. Da Nang. Vietnam15.9953, 107.9964
gpt-4.1-mini99.735.4kmBa Na Hills. Da Nang. Vietnam15.9971, 107.9927
o199.725.6kmSun World Ba Na Hills. Da Nang. Vietnam15.9998, 107.989
gpt-4o-mini10.161593.9kmGenting Highlands. Pahang. Malaysia3.1007, 101.6009
gpt-4.1-nano0.009784.4kmFabuleux Château. Montmartre. France48.8867, 2.3423
Test image: 40f3gp183fye1

Belchite. Spain

Coordinates: 41.305061126226, -0.7530548254839884

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4.199.99219mChurch of San Martín. Belchite. Spain41.3031, -0.7533
gpt-4o99.98475mChurch of San Pedro. Belchite. Spain41.3011, -0.7509
o399.97569mRuins of Church of San Martín de Tours. Belchite, Aragón. Spain41.3, -0.752
o199.931.3kmChurch of San Agustín Ruins. Belchite. Spain41.2935, -0.7578
o4-mini98.8623.1kmChurch ruins of Belchite. Aragon. Spain41.1761, -0.5376
gpt-4.1-mini0.009215.5kmSan Antonio de Padua Church Ruins. Parral. Mexico26.9369, -105.6522
gpt-4.1-nano0.009290.4kmSanta Maria del Monte. Urbina. Mexico19.2899, -99.1419
gpt-4o-mini0.000mRuins of a church. Unknown area. Unknown country0, 0
Test image: 4rr5khruc4pe1

Svaneti. Georgia

Coordinates: 42.9023105425406, 42.76450838682767

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4.199.2115.9kmSvaneti Towers. Mestia. Georgia43.0426, 42.7286
gpt-4o99.2016.2kmMestia. Svaneti. Georgia43.0456, 42.7297
o399.2016.2kmMestia. Upper Svaneti. Georgia43.045, 42.725
gpt-4.1-mini98.7026.4kmUshguli. Svaneti. Georgia43.1365, 42.7078
gpt-4.1-nano98.3333.9kmKhevsureti. Khevsureti. Georgia42.8167, 42.3667
o4-mini97.2756.1kmUshguli. Upper Svaneti. Georgia42.551, 43.2567
gpt-4o-mini96.8664.8kmUshguli. Svaneti. Georgia42.3483, 43.0102
o12.103171.2kmEiffel Tower. Paris. France48.8584, 2.2945
Test image: 663s6khtmzpe1

Oeschinensee. Switzerland

Coordinates: 46.49875223471309, 7.725654668480212

ModelScoreDistanceCountryPredicted LocationCoordinates
o3100.0080mOeschinen Lake. Bernese Oberland. Switzerland46.4988, 7.7267
gpt-4.1100.0088mOeschinen Lake. Bernese Oberland. Switzerland46.4983, 7.7266
gpt-4o100.0088mLake Oeschinen. Bernese Oberland. Switzerland46.4983, 7.7266
o4-mini99.98392mOeschinensee. Kandersteg. Switzerland46.4953, 7.7267
gpt-4.1-mini99.97558mOeschinensee Lake. Bernese Oberland. Switzerland46.4939, 7.7275
o199.941.3kmLake Oeschinen. Kandersteg. Switzerland46.51, 7.73
gpt-4.1-nano98.0040.9kmSwiss Alps. Bernese Oberland. Switzerland46.5814, 8.2453
gpt-4o-mini96.2378.3kmKlein Glattalp. Uri. Switzerland46.705, 8.703
Test image: 7lifruzpxsxe1

Chiesta di Ciagnano. Bologna. Italy

Coordinates: 44.169352999247195, 11.08675129501828

ModelScoreDistanceCountryPredicted LocationCoordinates
o398.7525.4kmApennine Mountains. Emilia-Romagna. Italy44, 11.3
gpt-4.198.3134.4kmAppennine Mountains. Emilia-Romagna. Italy44.4667, 10.9667
gpt-4o97.7845.5kmAppennine Mountains. Emilia-Romagna. Italy44.5, 10.75
o4-mini97.3354.9kmTuscan Hills. Tuscany. Italy43.7, 11.3
o197.1459.0kmTuscan-Emilian Apennines. Tuscany. Italy44.15, 10.35
gpt-4o-mini96.5371.8kmEmilia-Romagna. Northern Italy44.7185, 10.6109
gpt-4.1-mini96.4174.5kmTuscan Hills. Tuscany. Italy43.5246, 11.3426
gpt-4.1-nano0.009659.2kmCalifornia. Central Valley. United States37.8, -119.5
Test image: 8559h2hyvzxe1

Norrköping. Sweden

Coordinates: 58.58656793981692, 16.18442577657127

ModelScoreDistanceCountryPredicted LocationCoordinates
o399.951.1kmIndustrilandskapet on Motala Ström. Norrköping. Sweden58.596, 16.183
gpt-4.184.06384.0kmMalmö kanal. Malmö. Sweden55.6031, 13.0038
gpt-4o-mini29.38531.8kmTampere. Pirkanmaa. Finland61.4978, 23.7601
gpt-4.1-mini26.81623.4kmNidelva River. Trondheim. Norway63.4292, 10.3934
o124.83700.0kmLandwehr Canal. Kreuzberg. Germany52.4961, 13.4226
gpt-4o20.59887.3kmUferstraße. Chemnitz. Germany50.8394, 12.9296
gpt-4.1-nano0.027635.2kmSeattle. South Lake Union. Washington, USA47.6265, -122.3371
o4-mini0.000mNaN, NaN
Test image: 8mc5zcm0rlye1

Mini Europa. Brussels. Belgium

Coordinates: 50.89399553339399, 4.338897825398249

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o99.99179mMini-Europe. Brussels. Belgium50.8949, 4.341
o399.99185mMini-Europe. Brussels. Belgium50.895, 4.341
o199.99185mMini-Europe. Brussels. Belgium50.895, 4.341
gpt-4.199.99215mMiniature Houses of Parliament. Mini-Europe. Brussels. Belgium50.8949, 4.3416
gpt-4o-mini99.97628mMini-Europe. Bruparck. Belgium50.8959, 4.3473
gpt-4.1-mini99.745.2kmHouses of Parliament Miniature. Mini-Europe. Brussels, Belgium50.8481, 4.3499
o4-mini44.15124.3kmMadurodam miniature park. The Hague. Netherlands52.011, 4.285
gpt-4.1-nano35.90331.3kmMiniature World. Acton. United Kingdom51.506, -0.301
Test image: cvhedsp6yyye1

Taman Desa Aman. Kuala Lumpur. Malaysia

Coordinates: 3.092984707126988, 101.73891126775418

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o99.627.7kmKuala Lumpur. Federal Territory. Malaysia3.139, 101.6869
gpt-4.199.627.7kmKuala Lumpur skyline. Kuala Lumpur. Malaysia3.139, 101.6869
gpt-4.1-mini99.627.7kmKuala Lumpur. Kuala Lumpur City. Malaysia3.139, 101.6869
o199.578.7kmKuala Lumpur Skyline. Kuala Lumpur. Malaysia3.1578, 101.695
gpt-4o-mini99.539.4kmKuala Lumpur. Federal Territory of Kuala Lumpur. Malaysia3.1655, 101.6942
gpt-4.1-nano36.75307.9kmSingapore. Downtown. Singapore1.2944, 103.852
o4-mini3.932543.4kmZhujiang New Town. Tianhe District. China23.12, 113.324
o30.000mNaN, NaN
Test image: dtcacikt0qye1

El Chaltén. Santa Cruz Province. Argentina

Coordinates: -49.32770508542701, -72.89370948939126

ModelScoreDistanceCountryPredicted LocationCoordinates
o199.97616mEl Chaltén. Santa Cruz. Argentina-49.33, -72.886
gpt-4o99.97684mEl Chaltén. Santa Cruz. Argentina-49.3315, -72.8863
gpt-4.199.95980mRío de las Vueltas Valley. El Chaltén, Patagonia. Argentina-49.3333, -72.8833
o4-mini99.941.2kmMirador de los Condores. El Chaltén, Santa Cruz. Argentina-49.329, -72.878
o399.4910.2kmMirador Río de las Vueltas. Santa Cruz Province. Argentina-49.25, -72.82
gpt-4o-mini40.20218.1kmTorres del Paine. Magallanes. Chile-51.25, -73.5
gpt-4.1-mini25.21684.6kmFutaleufú River Valley. Patagonia. Chile-43.247, -71.481
gpt-4.1-nano0.027991.0kmFiordland. Southland. New Zealand-44.9533, 168.4455
Test image: fvbz0yxv4pye1

Munich. Germany

Coordinates: 48.14045743718532, 11.577947604604782

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4.199.98386mNew Town Hall (Neues Rathaus). Munich. Germany48.1374, 11.5755
gpt-4.1-mini99.98386mNew Town Hall (Neues Rathaus). Munich. Germany48.1374, 11.5755
o399.98386mNew Town Hall (Neues Rathaus). Marienplatz, Munich. Germany48.1374, 11.5755
o4-mini99.98386mNeues Rathaus. Marienplatz. Germany48.1374, 11.5755
o199.98396mNew Town Hall. Munich. Germany48.1373, 11.5755
gpt-4o99.98405mNew Town Hall. Munich. Germany48.1372, 11.5755
gpt-4o-mini99.98405mMunich. Bavaria. Germany48.1372, 11.5755
gpt-4.1-nano95.7189.7kmNeuschwanstein Castle. Bavaria. Germany47.5576, 10.7498
Test image: h0cjd7iacmye1

al-Mughsail Beach. Salalah. Oman

Coordinates: 16.8790912762519, 53.776900095525384

ModelScoreDistanceCountryPredicted LocationCoordinates
o399.862.9kmMughsail Beach. Dhofar Governorate. Oman16.88, 53.75
gpt-4.199.754.9kmMughsail Beach. Dhofar. Oman16.8587, 53.7359
gpt-4o99.725.7kmMughsayl Beach. Dhofar. Oman16.8606, 53.8269
o199.4610.8kmMughsayl Beach. Dhofar. Oman16.93, 53.69
o4-mini98.4032.6kmRas Madrakah Beach. Dhofar. Oman16.99, 54.06
gpt-4.1-mini67.111072.2kmCamel Beach. Musandam Peninsula. Oman26.2833, 56.25
gpt-4o-mini18.151013.5kmRas al Khaimah. Ras al Khaimah. United Arab Emirates25.8007, 55.9661
gpt-4.1-nano0.037325.2kmKuta Beach. Bali. Indonesia-8.7129, 115.1699
Test image: jt71bizat3ze1

Gediminas Hill. Vilnius. Lithuania

Coordinates: 54.686725355074465, 25.291947654368556

ModelScoreDistanceCountryPredicted LocationCoordinates
o4-mini99.99229mGediminas Castle Tower. Vilnius Old Town. Lithuania54.6872, 25.2885
o199.98319mGediminas Tower. Vilnius. Lithuania54.685, 25.288
o399.98372mGediminas Hill overlook. Vilnius. Lithuania54.685, 25.287
gpt-4o-mini99.96792mVilnius. Vilnius County. Lithuania54.6872, 25.2797
gpt-4.199.96792mVilnius. Vilnius County. Lithuania54.6872, 25.2797
gpt-4.1-mini99.96792mVilnius. Vilnius County. Lithuania54.6872, 25.2797
gpt-4o99.96792mVilnius. Vilnius County. Lithuania54.6872, 25.2797
gpt-4.1-nano99.931.3kmVilnius. Naujamiestis. Lithuania54.6767, 25.2814
Test image: lt83bp7cimre1

Meggen. Switzerland

Coordinates: 47.04642129884924, 8.368384234323914

ModelScoreDistanceCountryPredicted LocationCoordinates
o199.941.3kmMeggenhorn Castle. Meggen. Switzerland47.0417, 8.3534
o399.921.7kmSchloss Meggenhorn. Meggen Lucerne. Switzerland47.037, 8.386
o4-mini44.18123.8kmVilla del Balbianello. Lenno. Italy46.111, 9.245
gpt-4.143.69135.0kmVilla Monastero Gardens. Varenna. Lake Como. Italy46.0102, 9.2861
gpt-4.1-mini43.68135.1kmVilla del Balbianello. Lake Como. Italy45.9881, 9.2332
gpt-4o43.67135.3kmVilla Monastero. Varenna. Italy46.0103, 9.2934
gpt-4.1-nano43.61136.8kmVilla Carlotta. Tremezzo. Italy45.9803, 9.2594
gpt-4o-mini43.57137.7kmVilla Carlotta. Tremezzina. Italy45.9591, 9.2286
Test image: lua93tq0k8ye1

The Eastern Plains of Colorado

Coordinates: 40.81954371853186, -104.13637089434329

ModelScoreDistanceCountryPredicted LocationCoordinates
o399.715.8kmPawnee National Grassland. Colorado Plains. United States40.85, -104.08
gpt-4.190.12220.0kmHigh Plains. Eastern Wyoming. United States42.8, -104.2
gpt-4o-mini83.27407.3kmOpen Road. Prairie. Unknown39, -100
gpt-4.1-nano80.79484.8kmGreat Plains. Central North America39.8283, -98.5795
o4-mini80.24503.0kmGreat Plains Road. Kansas. USA38.5, -99.1
gpt-4.1-mini79.65522.4kmGreat Plains. Central United States. USA39, -98.5
o175.07690.2kmOpen Plains. Eastern Montana. USA47, -105
gpt-4o19.07963.7kmGrasslands National Park. Saskatchewan. Canada49.1827, -107.3771
Test image: luktldk2egre1

Lajes do Pico. Portugal

Coordinates: 38.40549841993781, -28.25315084428971

ModelScoreDistanceCountryPredicted LocationCoordinates
o399.902.1kmPastures near Lajes do Pico. Pico Island. Azores, Portugal38.39, -28.24
o199.559.0kmPico Island. Azores. Portugal38.46, -28.33
gpt-4o98.9521.3kmCais do Pico. Azores. Portugal38.5254, -28.4432
gpt-4.198.9221.9kmMadalena. Pico Island. Azores. Portugal38.5351, -28.4419
gpt-4.1-mini97.9442.2kmFaial Island. Azores. Portugal38.55, -28.7
gpt-4o-mini95.01105.1kmTerceira. Azores. Portugal38.7169, -27.1149
o4-mini89.42237.7kmCapelas. São Miguel Island. Portugal37.839, -25.639
gpt-4.1-nano0.0018032.2kmWellington. Island. New Zealand-41.2866, 174.7762
Test image: ly6hr29317ze1

Bari. Italy

Coordinates: 41.12775105014424, 16.872412154582783

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o100.0075mBari Harbor. Bari. Italy41.1272, 16.8719
o4-mini99.98372mPorto di Bari. Apulia. Italy41.128, 16.868
o399.97625mOld Port. Bari. Italy41.1294, 16.8653
gpt-4o-mini99.941.2kmBari. Apulia. Italy41.1171, 16.8719
gpt-4.1-mini98.8423.5kmHarbor of Molfetta. Apulia. Italy41.1954, 16.6069
gpt-4.198.8124.2kmPorto Vecchio. Molfetta. Apulia, Italy41.2008, 16.6013
gpt-4.1-nano90.12220.2kmMarina. Mediterranean Coast. Italy40.6293, 14.3442
o10.000mNaN, NaN
Test image: m2c1qur9p2ye1

National World war I museum and memorial. Kansas City. Missouri. USA

Coordinates: 39.08000875732042, -94.58630968477662

ModelScoreDistanceCountryPredicted LocationCoordinates
o1100.0027mNational World War I Museum and Memorial. Kansas City. United States39.08, -94.586
gpt-4o99.99168mLiberty Memorial. Kansas City, MO. USA39.0813, -94.5853
gpt-4.199.99219mNational WWI Museum and Memorial. Kansas City. United States39.0817, -94.585
o399.99239mLiberty Memorial. Kansas City, Missouri. United States39.0819, -94.585
o4-mini99.98338mNational World War I Museum and Memorial. Kansas City. USA39.0784, -94.583
gpt-4o-mini99.98449mLiberty Memorial. Kansas City. United States39.0833, -94.5833
gpt-4.1-mini99.96801mLiberty Memorial. Kansas City. USA39.084, -94.5786
gpt-4.1-nano99.921.7kmNational World War I Museum and Memorial. Kansas City. USA39.0952, -94.586
Test image: qck26k56doye1

Hoodoo trail near Fairmont Hot Springs

Coordinates: 50.32244020000868, -115.8859094

ModelScoreDistanceCountryPredicted LocationCoordinates
o198.9421.4kmLake Windermere. Invermere. Canada50.5, -116
gpt-4.198.8922.4kmWindermere Lake. Columbia Valley. British Columbia, Canada50.5022, -116.0292
o398.8024.2kmInvermere overlook. Columbia Valley. British Columbia, Canada50.52, -116.03
gpt-4o98.2934.7kmColumbia Valley. British Columbia. Canada50.6205, -116.0306
gpt-4.1-mini96.2777.6kmLake Koocanusa. Kootenay Rockies. Canada49.65, -115.6
gpt-4o-mini94.95106.6kmKootenay Lake. British Columbia. Canada49.5931, -116.8487
gpt-4.1-nano88.59258.9kmOkanagan Lake. Okanagan Valley. Canada50.0333, -119.4833
o4-mini42.15170.9kmLake Koocanusa. Lincoln County, Montana. USA48.8, -115.57
Test image: r8iljc816pye1

Holy Cave of Covadonga. Asturias. Spain

Coordinates: 43.30785743435334, -5.054537240405556

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o99.99106mSanta Cueva de Covadonga. Asturias. Spain43.3083, -5.0557
o199.99140mSanta Cueva de Covadonga. Cangas de Onis. Spain43.3066, -5.0547
o399.97618mSanta Cueva de Covadonga. Asturias. Spain43.305, -5.048
gpt-4.199.96838mSanta Cueva de Covadonga. Asturias. Spain43.3154, -5.0549
o4-mini99.941.2kmSanta Cueva. Covadonga. Spain43.3158, -5.0441
gpt-4.1-mini99.931.3kmSantuario de Covadonga. Asturias. Spain43.312, -5.07
gpt-4.1-nano83.00415.4kmChapel of St. Mary of the Mountain. Ordesa and Monte Perdido National Park. Spain42.617, -0.05
gpt-4o-mini5.202263.5kmCave Monastery. Greece.39.575, 21.695
Test image: rlvgt4lvhuqe1

Eiffel Tower. Paris. France

Coordinates: 48.85829951251494, 2.2944276558201486

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4.1100.0012mEiffel Tower. Paris. France48.8584, 2.2945
gpt-4o-mini100.0012mEiffel Tower. Paris. France48.8584, 2.2945
gpt-4o100.0012mEiffel Tower. Paris. France48.8584, 2.2945
o3100.0012mEiffel Tower. Paris. France48.8584, 2.2945
o1100.0012mEiffel Tower. Paris. France48.8584, 2.2945
gpt-4.1-mini100.0012mEiffel Tower. Paris. France48.8584, 2.2945
gpt-4.1-nano100.0012mEiffel Tower. Champ de Mars. France48.8584, 2.2945
o4-mini0.000mNaN, NaN
Test image: slgqvlz35lye1

Buenos Aires. Argentina

Coordinates: -34.615776471031346, -58.36425925635625

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4.1-mini99.98409mFragata Sarmiento Museum Ship. Puerto Madero. Buenos Aires. Argentina-34.6131, -58.3612
o199.98430mPuerto Madero. Buenos Aires. Argentina-34.6119, -58.3643
o4-mini99.97698mARA Presidente Sarmiento. Puerto Madero. Argentina-34.6096, -58.3628
gpt-4o-mini99.96829mPuerto Madero. Buenos Aires. Argentina-34.6083, -58.3643
gpt-4o99.96881mFragata Sarmiento. Puerto Madero. Buenos Aires, Argentina-34.6081, -58.3667
o399.95952mFragata Presidente Sarmiento. Puerto Madero. Argentina-34.6072, -58.364
gpt-4.199.951.0kmFragata Sarmiento. Puerto Madero. Buenos Aires. Argentina-34.6066, -58.3655
gpt-4.1-nano0.0011632.6kmMelbourne. Docklands. Australia-37.8204, 144.9444
Test image: t6q7cdevkkye1

Mt Baker. Washington. USA

Coordinates: 48.7765950825434, -121.81445076252866

ModelScoreDistanceCountryPredicted LocationCoordinates
o4-mini100.004mMount Baker. North Cascades. USA48.7766, -121.8144
gpt-4.1100.0023mMount Baker. North Cascades. Washington, USA48.7768, -121.8144
o1100.0040mMount Baker. North Cascades. United States48.7768, -121.814
o3100.0074mMount Baker. Washington State. United States48.776, -121.814
gpt-4o99.99101mMount Baker. Washington. USA48.7775, -121.8144
gpt-4o-mini99.98327mMount Baker, Washington, USA48.7766, -121.81
gpt-4.1-mini90.37214.0kmMount Rainier. Washington State. United States46.8523, -121.7603
gpt-4.1-nano90.37214.0kmMount Rainier. Cascade Range. Washington, USA46.8523, -121.7603
Test image: test_easy_123

London. England. UK

Coordinates: 51.50600543826935, -0.1392421698142612

ModelScoreDistanceCountryPredicted LocationCoordinates
o199.784.4kmTower Bridge. London. United Kingdom51.5055, -0.0754
o399.784.4kmTower Bridge over the River Thames. London. United Kingdom51.5055, -0.0754
gpt-4.1-nano99.784.4kmLondon. City of London. United Kingdom51.5055, -0.0754
o4-mini99.784.4kmTower Bridge. London. United Kingdom51.5055, -0.0754
gpt-4.199.784.4kmTower Bridge. London. United Kingdom51.5055, -0.0754
gpt-4o-mini99.784.4kmLondon. Greater London. United Kingdom51.5055, -0.0754
gpt-4o99.784.4kmTower Bridge. London. England51.5055, -0.0754
gpt-4.1-mini99.784.4kmLondon. Greater London. United Kingdom51.5055, -0.0754
Test image: tlhhs387i1ze1

Mdina. Malta

Coordinates: 35.885934757128176, 14.40323912422548

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o100.0021mMdina. Malta. Malta35.8858, 14.4034
gpt-4.1100.0061mMdina Old Town. Mdina. Malta35.8854, 14.4031
o399.99106mSt Paul's Cathedral alley. Mdina. Malta35.885, 14.403
gpt-4.1-mini99.99123mMdina. Malta35.8869, 14.4039
o199.99137mSt. Paul's Cathedral Alley. Mdina. Malta35.8869, 14.4023
o4-mini99.99264mSt. Paul's Cathedral. Mdina. Malta35.8883, 14.4029
gpt-4.1-nano99.4910.2kmValletta. Strait of Malta. Malta35.8997, 14.5146
gpt-4o-mini99.4910.2kmValletta. Valletta. Malta35.8989, 14.5149
Test image: witp_PXL_20240210_153417739

Cave Hill. Belfast. Northern Ireland

Coordinates: 54.649618590997214, -5.94539176648515

ModelScoreDistanceCountryPredicted LocationCoordinates
o199.931.4kmCave Hill. Belfast. Northern Ireland54.64, -5.96
gpt-4o99.921.5kmCave Hill. Belfast. Northern Ireland54.636, -5.9468
o399.892.2kmCave Hill. Belfast. United Kingdom54.63, -5.95
gpt-4.199.833.5kmBelfast Lough. Belfast. Northern Ireland54.6386, -5.895
gpt-4o-mini99.764.7kmBelfast. Northern Ireland. United Kingdom54.6094, -5.9213
o4-mini93.43141.0kmHowth Summit. Howth Head. Ireland53.385, -6.065
gpt-4.1-nano43.33143.1kmDublin Bay. Dublin. Ireland53.3712, -6.1773
gpt-4.1-mini43.20146.1kmDublin Bay. Dublin. Ireland53.3498, -6.2603
Test image: witp_PXL_20240507_093547695

Adare Manor. Limerick. Ireland

Coordinates: 52.56418501151495, -8.777813172690523

ModelScoreDistanceCountryPredicted LocationCoordinates
o199.98336mAdare Manor. County Limerick. Ireland52.5612, -8.7771
o399.97698mAdare Manor. Adare, County Limerick. Ireland52.5643, -8.7881
gpt-4o99.96889mAdare Manor. Adare. Ireland52.5562, -8.7778
gpt-4.199.941.2kmAdare Manor. Adare. Ireland52.5616, -8.795
gpt-4o-mini99.803.9kmAdare Manor. Adare. Ireland52.5592, -8.7206
gpt-4.1-mini99.647.2kmAdare Manor Golf Course. County Limerick. Ireland52.5415, -8.6784
o4-mini99.4511.1kmAdare Manor. Adare, County Limerick. Ireland52.5655, -8.6141
gpt-4.1-nano91.27191.8kmDruid's Glen Golf Club. County Wicklow. Ireland53.1327, -6.0897
Test image: witp_PXL_20240525_095058554

The Colosseum. Rome. Italy

Coordinates: 41.8912484494728, 12.493067747344234

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o-mini99.99133mColosseum. Rome. Italy41.8902, 12.4923
gpt-4o99.99137mColosseum. Rome. Italy41.8902, 12.4922
gpt-4.199.99137mColosseum. Rome. Italy41.8902, 12.4922
gpt-4.1-mini99.99137mColosseum. Rome. Italy41.8902, 12.4922
gpt-4.1-nano99.99137mColosseum. Rome. Italy41.8902, 12.4922
o399.99137mColosseum. Rome. Italy41.8902, 12.4922
o4-mini99.99137mColosseum. Rome. Italy41.8902, 12.4922
o199.99137mColosseum. Rome. Italy41.8902, 12.4922
Test image: witp_PXL_20240603_050429661

Las Vegas. Nevada. USA

Coordinates: 36.112601428986395, -115.1728523510388

ModelScoreDistanceCountryPredicted LocationCoordinates
o4-mini100.005mParis Las Vegas. Las Vegas Strip. USA36.1126, -115.1728
gpt-4o100.005mParis Las Vegas Hotel. Las Vegas Strip. USA36.1126, -115.1728
gpt-4.1100.005mParis Las Vegas Hotel & Casino. Las Vegas Strip. Las Vegas, USA36.1126, -115.1728
gpt-4.1-mini100.005mLas Vegas Strip. Paradise. United States36.1126, -115.1728
o3100.0012mParis Las Vegas Hotel & Casino. Las Vegas Strip, Nevada. United States36.1127, -115.1728
gpt-4o-mini100.0040mLas Vegas Strip. Las Vegas. United States36.1126, -115.1733
o199.99212mParis Las Vegas. The Strip, Las Vegas. USA36.1126, -115.1705
gpt-4.1-nano99.99233mLas Vegas Strip. Las Vegas. United States36.1147, -115.1728
Test image: witp_PXL_20240603_165548162

Westgate Hotel. Las Vegas. Nevada. USA

Coordinates: 36.13565165124027, -115.15203658063234

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o99.99104mElvis Statue. Westgate Las Vegas Resort & Casino. Las Vegas, USA36.1362, -115.1511
gpt-4.199.99155mElvis Presley Statue. Westgate Las Vegas Resort & Casino. Las Vegas, USA36.1353, -115.1537
o399.99256mElvis statue, Westgate Las Vegas Resort & Casino. Las Vegas. USA36.1351, -115.1548
o199.97600mElvis statue. Westgate Las Vegas. United States36.141, -115.153
o4-mini99.95902mElvis Statue. Westgate Las Vegas. United States36.1313, -115.1605
gpt-4.1-nano99.853.0kmThe Plaza Hotel, Las Vegas Strip, Las Vegas, USA36.1147, -115.1728
gpt-4.1-mini99.853.1kmElvis Presley Statue. International Hotel Lobby. Las Vegas, USA36.1126, -115.1711
gpt-4o-mini99.813.8kmThe Flamingo. Las Vegas. United States36.1699, -115.1482
Test image: witp_PXL_20241207_131831723

Science Museum. London. England. UK

Coordinates: 51.4972741286446, -0.1765169996531861

ModelScoreDistanceCountryPredicted LocationCoordinates
gpt-4o-mini99.99142mScience Museum. Kensington. United Kingdom51.4975, -0.1745
gpt-4.199.99152mScience Museum. London. United Kingdom51.4978, -0.1745
gpt-4.1-mini99.99152mScience Museum. London. United Kingdom51.4978, -0.1745
o399.99152mScience Museum. South Kensington. United Kingdom51.4978, -0.1745
o4-mini99.99152mScience Museum. South Kensington. United Kingdom51.4978, -0.1745
gpt-4.1-nano99.96720mLondon. South Kensington. United Kingdom51.491, -0.174
gpt-4o99.764.7kmImperial War Museum. London. England51.4957, -0.1083
o199.764.7kmImperial War Museum. Lambeth. England51.4963, -0.1082
Test image: witp_PXL_20250416_074638944

Battersea Park. London. England. UK

Coordinates: 51.482147643481014, -0.1589871915465551

ModelScoreDistanceCountryPredicted LocationCoordinates
o399.99134mPeace Pagoda. Battersea Park, London. United Kingdom51.482, -0.1609
gpt-4.199.98451mPeace Pagoda. Battersea Park. London, United Kingdom51.4781, -0.1586
gpt-4o99.98462mPeace Pagoda. Battersea Park, London. United Kingdom51.478, -0.1588
o199.97591mPeace Pagoda. Battersea Park. United Kingdom51.478, -0.1643
o4-mini99.97623mPeace Pagoda. Battersea Park, London. United Kingdom51.4766, -0.1602
gpt-4.1-mini99.96882mLondon Peace Pagoda. Battersea Park. United Kingdom51.4743, -0.1608
gpt-4.1-nano99.539.5kmKew Gardens. London. United Kingdom51.4779, -0.295
gpt-4o-mini19.89921.9kmPagoda. Munich. Germany48.1441, 11.5861
Test image: witp_PXL_20250505_152231590

Newcastle. County Down. Northern Ireland

Coordinates: 54.21182727949207, -5.888130106736441

ModelScoreDistanceCountryPredicted LocationCoordinates
o399.99279mNewcastle Promenade. Newcastle, County Down. United Kingdom54.214, -5.886
gpt-4o99.98333mNewcastle Promenade. County Down. Northern Ireland54.2101, -5.8923
gpt-4.199.98483mNewcastle Promenade. County Down. Northern Ireland54.2152, -5.8928
o199.97592mNewcastle Promenade. County Down. Northern Ireland54.217, -5.886
gpt-4o-mini99.921.5kmNewcastle. County Down. Northern Ireland54.1986, -5.8944
gpt-4.1-mini94.64113.4kmBray Seafront. Bray. Ireland53.2018, -6.1116
gpt-4.1-nano89.07246.7kmOban. Oban Bay. United Kingdom56.4154, -5.4711
o4-mini44.64113.3kmBray Promenade. County Wicklow. Ireland53.202, -6.108
Test image: wu1lllmef8ye1

Għajn Tuffieħa. Malta

Coordinates: 35.928640649779815, 14.344122407757572

ModelScoreDistanceCountryPredicted LocationCoordinates
o4-mini70.29901.9kmKleftiko. Milos. Greece36.62, 24.35
gpt-4.1-nano21.70834.5kmCerretto Beach. Isola d'Elba. Italy42.7591, 10.2952
o120.41895.9kmKleftiko Caves. Milos Island. Greece36.6182, 24.2832
o320.37898.2kmKleftiko Caves. Milos. Greece36.631, 24.308
gpt-4o20.33899.9kmKleftiko Caves. Milos. Greece36.6178, 24.3281
gpt-4o-mini20.14909.6kmSarakiniko Beach. Milos. Greece36.7103, 24.4316
gpt-4.1-mini20.05913.9kmSarakiniko Beach. Milos. Greece36.7639, 24.4775
gpt-4.119.86923.6kmKleftiko Caves. Milos. Greece36.638, 24.5918